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Abstract 

Subgrid  analysis of a  transitional  temporal mixing layer  with  evaporating 

droplets has been  performed  using three sets of results from  a  Direct  Numeri- 

cal  Simulation  (DNS) database, with  Reynolds  numbers  (based  on  initial  vor- 

ticity  thickness) as large as 600 and  with  droplet  mass  loadings as large as 0.5. 

In  the DNS, the gas  phase  is  computed  using  a  Eulerian  formulation,  with 

Lagrangian  droplet  tracking. The Large  Eddy  Simulation  (LES)  equations 

corresponding to  the DNS are first  derived,  and key  assumptions  in  deriving 

them are first  confirmed  by  computing the terms  using the DNS database. 

Since  LES of this flow requires the computation of unfiltered  gas-phase  vari- 

ables at droplet  locations  from  filtered  gas-phase  variables at  the grid  points, 

it  is  proposed to model  these  by  assuming the gas-phase  variables to be the 

sum of the filtered  variables  and  a  correction  based  on the filtered standard 

deviation;  this  correction is then  computed  from the Subgrid  Scale (SGS) 

standard deviation.  This model predicts the unfiltered  variables at droplet 

locations  considerably better than simply  interpolating the filtered  variables. 

Three methods are investigated  for  modeling  the SGS standard deviation: 
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the Smagorinsky  approach, the Gradient  model  and the Scale-Similarity for- 

mulation.  When the proportionality  constant  inherent  in the SGS  models is 

properly  calculated, the Gradient  and Scale-Similarity methods give results 

in  excellent  agreement  with the DNS. 

Typeset using R E V W  
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I.  INTRODUCTION 

Droplet-laden turbulent flows are  an inherent part of atmospheric flows such as rain and 

superficial oceanographic shear layers, and of industrial processes such as spray painting, ink 

jet  printing, household and medical spray dispensing, and  spray  atomization  and combustion 

in  engines and furnaces. The interaction of particles and turbulence gives these flows their 

particular characteristics which are different  from  single phase flows.  For example, it is 

well  known that addition of particles to a mixing  layer increases or decreases its stability 

depending upon the  ratio of the particle  diameter divided by the turbulence  length scale (see 

[5]). Moreover, when gas evolves from the particles (e.g. phase change for drops, chemical 

reactions for  solid particles) there is an additional  thermodynamic coupling related to  the 

dynamic one (because of the added mass to  the gas phase) which might change this  stability 

boundary. 

Because the particles-turbulence interaction is an integral feature of such flows, it has 

been the topic of much  research [3,5,7,21]. Large Eddy Simulation (LES), in which the 

flow  field  is spatially filtered, is emerging as a powerful tool in modeling unsteady  turbulent 

flows. It is expected to be more generally applicable than Reynolds-Averaged  Navier Stokes 

(RANS), since the large scale structures  are  computed,  and  the more universal small scale 

structures  are modeled. LES is also less computationally intensive than Direct Numerical 

Simulation (DNS) in which all length scales are resolved, and  has the additional  advantage of 

being able to accommodate considerably larger Reynolds numbers. Whereas much research 

has been devoted to LES modeling  for single phase incompressible flows,  only moderate 

attention has been  given to compressible shear flows [1,25], with focus  now turning two- 

phase flows [6,19,29]. In addition to modeling subgrid scale (SGS) terms for the gas phase, 

a LES of a droplet-laden flow would require modeling the unfiltered gas phase variables at 

the  droplet locations. Several LES studies exist of particle laden homogeneous shear flows 

[30], of mixing layers  [19], [28], of particle laden channel flows [23], [26], [27], of sprays [17], 

and of general particle laden flows [6]. However,  none  of those studies benefitted from an 
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u priori SGS model; instead,  the SGS model  was assumed and sometimes Further validated 

with data. In the present study, we develop an n priori SGS rnodel  for drop laden mixing 

layers with phase change. 

The success of the LES approach crucially depends upon the fidelity of the SGS in 

modeling the small scales by using only the values of the variables at  the larger scale, which 

are  the only quantities available in the LES context. In simplistic models, the filtered 

variables are  substituted for the unfiltered variables, but  this  expeditious choice  is made 

only when  DNS databases or empirical data are not available to guide SGS modeling; this 

assumption may be  substantially  inaccurate for droplets. With an increasing body of DNS 

computations, [3], [7], [lo], [ll], [13], [14], [15], [22], and [24], it is  now possible to assess SGS 

quantities at moderate Reynolds numbers, with good prospects for devising SGS models. 

In a recent DNS, Miller and Bellan [14,15] generated a  database for droplet laden three- 

dimensional mixing  layers with phase change. The  authors used the terminology ‘DNS’ to 

refer to computations in which all length scales of the gas-phase are resolved but  the effect of 

the gas on each droplet  (drop sizes are smaller than  the Kolmogorov scale) is  modeled  using 

a validated drop model  based  on non-equilibrium evaporation and Stokes drag with a  drag 

coefficient accounting for  blowing from the drops. Drops and gas are  entirely coupled, both 

dynamically and thermodynamically, and  the effect of the droplets  on the gas is  modeled 

through source terms in the gas-phase equations. The present paper addresses the use 

of the DNS database of Miller and Bellan  [14] to evaluate SGS closures. Specifically, we 

examine three Reynolds number  (Re, based  on initial vorticity thickness, Sw,o, and initial 

velocity  difference, Avo) and mass loading ( M L )  combinations: Re = 500, M L  = 0.2; 

Re = 500, A4L = 0.5; Re = 600, M L  = 0.2. We consider the fully developed flow situation 

for all cases, corresponding to  a dimensionless time tAU,/S,,o of about 85. 
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11. GOVERNING EQUATIONS 

The governing equations  are  formulated in an Eulerian - Lagrangian manner whereby 

the carrier gas is modeled in an Eulerian frame whereas the  drops  are followed on  their 

trajectory in a Lagrangian frame. These  equations for the gas phase are recalled from Miller 

and Bellan [15] to be: 

dP a - + - [ p u j ]  = SI at d X j  

w+-[  at axj  d pyvuj - = SI 
dXj 

P = pRT (6) 

where p is the gas phase density, ui is the gas phase velocity, E = e + uiui/2 is the  total gas 

energy (internal e, plus kinetic), P is the thermodynamic  pressure, aij is the viscous stress 
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tensor, Yv is the mass fraction of the evaporated species, subscript I/’ denotes the vapor, 

subscript C denotes the carrier gas, the mass fraction of the carrier gas is Yc = 1 - Yv, bi, is 

the Kronecker delta function, Rv = &/WV with W denoting the molecular weight and & 

being the universal gas constant,  and p ,  A and r are  the  constant gas phase viscosity, thermal 

conductivity and Fickian diffusion coefficient, respectively. The right  hand side terms SI ,  

S11,i and SII I  describe the phase couplings of mass, momentum and energy, respectively 

(discussed below).  Note that a variable density (compressible) formulation is necessary even 

for  low velocity flows due  to  the presence of both  the mass source term  and  to non-equal 

molecular weight effects. 

Coupled to  the gas conservation equations,  the Lagrangian  particle  equations for the 

position ( X i ) ,  velocity (vi) temperature ( T d )  and mass (md) are: 

d X i  - 
d t  

= vi, 

where the coupling between flow and  drops is contained in the force term, Fi, the  heat 

transfer term, Q,  and  the mass evolution from the  drop  term, d m d / d t .  Computation of the 

drag force Fi, the  heat flux Q and  the evaporation rate d m d / d t  requires knowledge of the 

gas phase variables (ui, T ,  Yv, P )  at the  droplet locations, and involves in  particular  the 

use of validated models for the description of a single drop behavior [15]. Employing these 

validated  relationships, yields: 
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where the  subscript d denotes  individual  droplet  conditions, the particle  time  constant for 

Stokes flow  is ~d = pr,D2/(18p), D is the droplet  diameter, CL is the  heat capacity of the 

liquid and  the  latent  heat of evaporation is Lv. The gas  mixture  heat  capacity is calculated 

using a  mass  averaging, Cp,c = (1 - Yv)CP,c + YvC,,v (evaluated at  the droplet  location) 

where CP,c and C,,V are  the  constant  pressure  heat  capacities of the carrier gas and vapor, 

respectively (C,,,C and CU,v are the corresponding  constant volume heat  capacities). The 

gas phase Prandtl  and Schmidt  numbers are  Pr = p C P , ~ / A  and Sc = p / ( p r ) ,  respectively. 

The  evaporation  rate is determined by the mass  transfer  number; BM = (Ys - Yv)/(  1 - Ys) 

(subscript S denotes  droplet  surface  conditions). To account for the effects of finite  droplet 

slip Reynolds numbers, the semi-empirical Ranz-Marshall correlations are utilized for the 

Nusselt ( N u )  and Sherwood (Sh)  numbers, whereas f i  is an empirical  correlation  accounting 

for the effects of both finite slip and  evaporation to Stokes drag.  The function f 2  = ,B/(ep - 1) 

is an  analytical  evaporative  heat  transfer  correction, where the non-dimensional  evaporation 

parameter ,f? = -1.5 Pr Td A d  / m d  is constant for droplets obeying the ‘D2 law’. The vapor 

surface mass  fraction is calculated  directly from the surface molar fraction ( x s )  which  is 

obtained by equating  the vapor and liquid fugacities at the surface  (i.e. xsP = Psat) with 

the  saturation pressure (Psa,) provided by the Clausius-Clapeyron relation yielding: 

where Patm is atmospheric  pressure, TB,L is the liquid saturation  temperature  at Patm (i.e. 

the normal boiling temperature). As shown  by  Miller and Bellan [15], the  latent  heat must 

be a linear  function of temperature for calorically perfect species: LV = h t  - (CL - CP,v)Td. 

Equations 11 - 17 allow the  computation of the eqs. 1 - 4 source terms which are (see 

Miller and Bellan [15]) 
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where the summation is  over the a droplets within a discretization volume V associated with 

each grid point,  and  the weights w, distribute  the droplet contribution  among the nearest 

eight grid points;  this weighting  is necessary because the drop locations do not coincide  in 

general to Eulerian grid points. On  the other  hand, eqs. 11 - 16 require the knowledge of 

the gas flow variables at  the  drop locations; this is  accomplished  by using a  fourth order 

Lagrange interpolation procedure [15]. 

As explained by  Miller and Bellan [15], even for the smaller mass loadings used  in the 

calculations, the source terms exhibit spatial ‘spottiness’ resulting in artificial oscillations. 

To mitigate  this  situation, the source terms  are minimally smoothed with  a conservative 

operator.  This  operation is not a filtering, as one of the filter’s characteristics is to truncate 

the high  wave number  terms, resulting in a nonconservative procedure. 

The governing equations  are  integrated  in  time using a fourth-order Runge-Kutta explicit 

scheme, with eighth-order finite-differences for all derivatives and  fourth-order Lagrangian 

interpolation of gas-phase variables to droplet locations, as explained in detail in  Miller and 

Bellan [15]). The numerical mesh  is  uniform in all directions with Ax1 E Ax2 Ax3. 

The initial conditions axe similar to those of Moser and Rogers  [16] and we refer the 

reader to Miller and Bellan  [15]  for details. Basically, the configuration chosen  is that of 

the temporally developing mixing  layer  where the streamwise ( X I ) ,  cross stream ( 2 2 )  and 

spanwise (z3) coordinates  are defined, and  the respective lengths are L1 = 4x1, L2 = l. lL1 

and L3 = 4x3, where X1 and X3 are  the forcing  wavelengths  in the x1 and x3 directions, 

X1 = 7.296,,0  is an empirically found (see Moser and Rogers [16]) most unstable wavelength 

for the initial profile, and X3 = 0.6X1 following the suggestion of [16]; for all the simulations 

performed by  Miller and Bellan  [15] L1 = 0.2  m. The relative amplitudes of the forcing per- 

turbations  with respect to  the circulations are 10% and 2.25%  in the spanwise and streamwise 
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directions, respectively. The  boundary conditions used i n  conjunctiorl with the conservation 

equations were periodic in the x1 and x 3  directions, and  adiabatic slip-wall conditions in the 

x2 direction were  employed.  To insure physical  consistency and avoid numerical instabilities, 

the wave decomposition method of Poinsot and Lele [18] was  used at  the slip-wall bound- 

aries. The initial vorticity thickness was bu,o and b,(t) = Avo/ < dul/d~Z where the 

brackets < > indicate averaging  over  homogeneous z1 - z3 planes. The freestream velocity 

difference across the layer, AUO was calculated from a specified  value of the convective  Mach 

number, M, . 

The purpose of this investigation is to develop a SGS model to be utilized in a LES for 

a  drop laden shear layer. Just as in the DNS, in the LES, the gas phase equations will be 

solved in an Eulerian frame, but at  the LES, larger scale rather  than  the DNS scale, whereas 

the drops will be followed in a Lagrangian frame. Therefore we can immediately identify 

two additional issues to  that of the expected modeling of the SGS terms in the filtered 

gas phase equations. First, gas phase variables being calculated on the larger grid may no 

longer be  a good representation of the equivalent DNS values, and  the question arises on 

how to accurately calculate these unfiltered values at  the drop locations. On the other  hand, 

the  drop  dependent variables are accurately calculated at each drop  location if every single 

drop is  followed  on its trajectory. However, since the gas phase source terms in the filtered 

equations represent averages over the drops in the filtered volume, there is an inherent degree 

of uncertainty on how to model these source terms, Le.  how to accurately represent them 

using  only information at-  the LES scale. This  uncertainty represents the second additional 

issue to be addressed in a two phase flow LES formulated in the Eulerian/Lagrangian  context. 

We address in this  paper the first  issue  identified  above and defer the discussion of the second 

issue to a  future publication. 
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111. FILTERED GOVERNING  EQUATIONS 

A. General  equations 

The general definition of a filter operation is: 

where GA is the filter function, and V is the filtering volume. In this  study, we use a cubic 

tophat filter, in which V is a  cube of sides A, and GA is simply a volume-average: 

1 3  

where H ( x )  is the Heaviside function and A is the filter width.  Our choice  is guided by the 

simplicity of the associated integrations according to eq. 21, and we disregard at  this point 

the fact that  the filtered equations are  no longer invariant to coordinate  rotations  other than 

orthogonal. Since the goal of this investigation is to perform a LES of the shear layer  using 

the SGS derived herein (and compare it with the filtered DNS), this lack of invariance can  be 

tolerated.  One of the properties of eq. 21 is that for (b = 1, $ = 1 as  well.  For compressible 

flow, we define the  traditional Favre filtered variables as 4 = %/p,  thereby removing the 

density fluctuations from the averaged equations. Applying the filtering, and assuming that 

differentiation and filtering commute, the gas phase equations become: 
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where we have  defined 

7 . .  = 2 1 . 2 1 .  - U . U .  
23 ' 3  2 3  

Y 

ej =  TU^ - T G ~  
- 

ep = Fvcp,v + (1 - FV)CP,C 

E = FvRv + (1 - Y ; )  & = eP - Eu 

and  it  has been assumed that 

- - aij = a;j 

- 
T = F  
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Equation 36 is inspired by the RANS equations  and the  term (CP,v - Cp,c)mjT + Cp,cpOj 

is a direct result of the assumption of eq. 38. For example, if  we assume instead that 

this  term would be replaced by C'ppOj.  Moreover, eq. 42 is derived (for constant I?) from 

by assuming the last  term to be  negligible.  Also,  in contrast to  the single phase situation 

where the filtered equation of state contains T only,  in the two phase case YTT appears as 

well.  In the next subsection we  will assess the validity of all assumptions  introduced by eqs. 

34 - 39 and 42 and show that they  are justified for the three  sets of results analyzed. 

In the present two phase flow formulation a SGS model must contain  not only models 

for the subgrid  stresses, Ti j ,  but also models for the subgrid heat flux t9j and  the subgrid 

species flux q j .  Furthermore, since it is T rather  than T that appears in the heat flux in the 

energy equation,  this introduces the  quandary as to which  is the  appropriate averaging of 

the  temperature.  In  the SGS model presented below  we opt to use Ti, making therefore the 

assumption that T = T ,  and note that using T requires the assumption [8] that Z@/dxj = 
dTi/dxj; an assessment of the former assumption is presented below. 

The SGS modeling is performed with the understanding that  the droplet equations will 

still be  solved in  the LES, except that in LES the gas-phase variables (ui, T ,  Yv, P )  at  the 

droplet locations are no longer immediately available and need to be derived from the filtered 

variables (Gi ,  T ,   Y v ,  F ) .  Therefore, in order to be able to utilize a SGS model, one must also 

construct a model of each of the unfiltered gas-phase variables as  functions of the filtered 

values of the same variable. These models will be derived  in the next section. 

" 
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B. Magnitude of terms  and  evaluation of underlying assumptions in the LES 

equations 

1. Magnitude of terms in LES equations 

An evaluation of the magnitude of various terms in the LES equations is prerequisite 

not only to assessing the assumptions of eqs. 34 - 39 and 42, but  it is  also crucial in 

providing both  an understanding of the balance among  terms,  and an intuition on the 

models that may be used  for SGS modeling. This evaluation is performed using the  three 

sets of results from the  database generated by  Miller and Bellan [14], TP500a,  TP500b 

and  TP600 of a  transitional,  temporal  drop laden mixing  layer  whose characteristics are 

summarized in Table I. As stated above, the Reynolds number,  Re, is  based  on initial 

vorticity thickness, 6,,0, and initial velocity  difference, Avo. The mass loading, M L ,  is 

the initial loading in the droplet-laden stream  and  the  database  contains  the results at  the 

dimensionless time of tA&/b,,o = 85. All three simulations were performed in a domain 

with grid size 0.2mx0.22mx0.12m.  Our analysis is performed on the same grid as the DNS, 

with the resolutions listed in Table I, and all derivatives are  calculated employing the same 

eighth-order finite-difference operator as in the DNS. In  all cases, we use a cubic tophat 

(box) filter, with filter width A = 4  max(Ax1,  AX^,  AX^) where Ax, N Ax2 N  AX^. 
Presented in Tables I1 - VI is such an evaluation for the momentum  eq. 24 (Tables I1 - 

IV), the energy eq. 25 (Table V), and  the species eq. 26 (Table VI). Listed in the tables 

are  the global root-mean-squares (RMS(4) = &<< $2 >>>,  where <<< >>> denotes 

averaging over the whole domain) for  cases TP500a,  TP500b  and TP600. From Tables I1 

- IV it is immediately apparent that in the  three  momentum  equations Zi&iij/i?xj and 

a P / a X j  are  the largest terms,  and that they  are of about  the same order of magnitude. The 

smallest term, which is two orders of magnitude smaller than  the  largest, is a(i7ij - i?ij)/axj, 

justifying the assumption 7 i j  = Zij. In the middle range are aZjrij/axj and a Z i j / a x j ,  with 

the former term being about  three times as large as the  latter, whereas the source term 311,i 
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is slightly srrlaller than  the middle range terms. Note that  the source  terms which are listed 

in Tables I1 - VI are averaged over the whole grid,  but  are zero over about 20% of the grid 

where there  are no droplets. However, planar RMS evaluations of the relative magnitude 

of the  same  terms in the center of the mixing layer (see Fig. 1 for case TP600) gives the 

same  magnitude as that over the  entire  domain, thereby reinforcing our  magnitude  ranking 

above. 

A similar evaluation of the energy  equation  terms displayed in  Table V reveals that 

the inviscid subgrid term is of the  same order of magnitude as the resolved inviscid term 

d ( p g  + p)Gj/axj, followed  by the heat flux and  the resolved viscous term.  The viscous 

subgrid term d(uiaij-G,Zij)/axj is about one-third of the viscous resolved term aGii?ij/axj, 

suggesting that although m / a x j  and dGi8ij/axj are of the  same  magnitude,  they  are 

not perfectly correlated. The correlation between two terms is defined either by averaging 

over homogeneous (x1 - x3) planes 

< X Y >  R ( X ,  Y ;  x2) = dz”%/= 
or over the whole domain 

R ( X ,  Y )  = <<< XY >>> 
J<<< x2 >>><<< Y2 >>> 

(45) 

where by definition R is between -1 and 1. As usual, values near 1 indicate  strong positive 

correlation, values near -1 indicate  strong negative correlation,  whereas values near 0 indicate 

poor correlation. More  precisely, we find that  the correlation of w / a x j  and &iii?ij/axj 

over the  entire grid is 0.92, and a corresponding linear fit  is m / a x j  = 0.950ii&7ij/axj. 

As will be seen below, this  correlation is only slightly worse than  that between and 

i i @ i j .  Moreover, since - G*i?ij)/axj is the smallest term in the energy equation, it is 

not unreasonable to neglect it.  The source term 3111 is about  the  same size as the  heat flux 

term  justifying  our  expectation that  it is an  important  term. 

In  Table VI we finally display a comparison of the  magnitude of the species equation 

terms. Clearly, the subgrid term,  the source term  and  the diffusion term  are all of the  same 
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order, being an order of magnitude smaller than the resolved  convective term.  The smallest 

term d (pTdYv/dxj) d x j  - d (pr'd?i,-/8xj) /axj is about half of d ( p r a F v / d x j )  /axj, but 

could  possibly  be  neglected if the correlation between p d Y v / d x j  and p d F v / d x j  is high; this 

is indeed the case, as discussed  below. 

Additional to  the global RMS values  shown  in the tables, the planar RMS values of the 

various terms in  each equation are presented for  case TP600 in Fig. 1 (in the figures [ ] 

and { } are used to denote regular and Favre filtering, respectively), and they confirm the 

conclusions reached from the global RMS values. 

2. Evaluation of LES assumptions 

A systematic evaluation of the key assumptions made in deriving the LES equations 

is presented in Figs. 2 - 6 by showing the (x1 - z3) plane averages of the approximated 

terms. The analysis is carried out for  case TP600 with A = 4 max(Az1, A X ~ ,  A z ~ ) ,  as 

above. Clearly, the assumption of eq. 36 ( f  (puiuiuj - p u , U , z l j )  = p&) is quite reasonable, 

as shown in Fig. 2. The assumptions of eq. 39 (T = ?) and 37 (pYvT = pYv T )  are 

also justified for this flow, as seen  in Fig. 3, although since the  turbulent  temperature 

" 

fluctuations in this  study appear to be quite small ( a s  will  be discussed below), these two 

assumptions may hold only  in the range of parameters covered  by this  study,  and  caution is 

recommended in using them  without justification in more general situations. 

Figure 4 addresses the modeling of pYvTuj through  either eq. 38 or eq. 43. As depicted 

in the figure, the right-hand side of eq. 43, &(%j - Ti&) is almost null and additionally, 

it is much smaller than  the left-hand side pYvTuj - pYvTiij. However, Fig. 4 shows that  the 

left hand  side of eq. 38, pYvTuj - pYvTiij, matches the right-hand side, @(Yzj - p~ i i j ) ,  
thereby indicating that this assumption is correct. Moreover, the correlation over the whole 

grid for the two-sides of eq. 43 is -0.270, whereas it is 0.999 for eq. 38, thus justifying the 

latter  assumption. 

To evaluate the assumption of eq. 35, uiaij = i&i?ij, we display in Fig. 5 the plane 
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averages, - iliaij and UiCZ3. Clearly, - zl,Gij is srnall compared to ii,t?,, and 

moreover a linear fit  shows = 0.94i7;,cTi,, with a correlation of 0.97; thus  the assumption 

= i i i Z i j  is justified. 

Finally, to assess the assumption of eq. 42, we display  in Fig. 6  both  paYv/axj  and 

@Pv/axj  and show them  to be well correlated. Furthermore, a  calculated linear fit shows 

paYv/axj = 0.997jTd?v/dxj with a correlation of 0.996, thereby confirming the intuitive 

idea that  paYv/azj  and i$&/axj may  be assumed equal. 

IV. MODEL  FOR  UNFILTERED  GAS  PHASE  VARIABLES 

As discussed above, the unfiltered gas phase variables not being available at  the droplet 

locations, they must be evaluated from the filtered gas phase variables through appropri- 

ate models. We define  by ‘appropriate models’ those relationships that give  values of the 

unfiltered variables as close in magnitude as possible to those of the DNS, and certainly 

better  than one would obtain by simply interpolating the values of the filtered variables 

at  the droplet locations. To guide the modeling, we will first consider the known  DNS 

generic variable #I and  its filtered form 3, where the bar is here a generic averaging denoting 

Favre filtering for u,, and YV and regular filtering for T and P. By definition, the  standard 

deviation is 

where $1 is the fluctuating  part of 4, and  thus  the relation between 4 and 3 is 

#I=$+ f a  

where  from the definition of 0,  f = f l .  Intuitively, in this formulation, f a  can be regarded 

as a correction to 3 with sign f and magnitude a. The goal of the modeling is to compute, 

from the filtered flow field, a model of f a ,  fmum, that provides a better approximation to 4 
than does fmum = 0. 
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Because of the inherent simplicity, it is at first tempting  to assume that f randomly takes 

on values of - 1 and 1. However, one  can show that  this is not necessarily the case. If the 

filtering operation is viewed as a volume average, a relation between 4 and $ can  be derived 

by considering the third-order Taylor expansion of 4 integrated over the filtering volume V 

of characteristic  length A with  centroid at x0 = ( x l 0 ,  x20, ~ 3 ~ ) :  

where from the definition of the centroid, $ &(xi - q0)dV = 0. If V is symmetric,  then 

and 

I ,A~ = - v v  ‘ J  (xi - zio)(zj - xjo)dV; i = j 

is the (positive) moment of inertia, so that one may rewrite eq. 49 as 

where terms of O(A3) vanish due  to  the  symmetry of the filtering volume. 

A comparison between eqs. 48 and 53, and  the  interpretation  that f is a sign correction 

leads to  the conclusion that f will generally be -sign (V24). However, 4 is not available in 

a LES formulation, and from the available filtered quantities we can  compute V2q rather 

than  V24. Therefore, to model f we assume that V2$ and  V2$ have the same sign and 

evaluate this  assumption for the gas phase variables in the section devoted to finalizing the 

SGS models. 

To model u, we note  that  the SGS terms for the gas phase that must be modeled have 

the generic form a - $$. If one defines USGS as  the SGS standard  deviation, 
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the  relationship between a and gscs can be elucidated by considering 7 

- a"=(q5-$)2=&b-2G+z - 
(55) 

where the second filter is unweighted (e.g. regular rather  than Favre) for all variables. To 

evaluate the  terms in  eq. 55, we note that = a'& 

terms of the local correlation between 4 and $ 

If  we assume that R(+,$) 2~ 1, then 

+ $$ and  that can  be  written in 

The assumption that R(4, $) N 1 was  checked  for all gas phase variables using the TP600  set 

of results and was found to be  justified (see the finalization of the SGS models  section). It 

is noteworthy that when using even small departures from the  unity (i.e. 0.99) assumption, 

one  obtains models for the unfiltered variables (in  particular Yv) that  are considerably less 

accurate  than those  obtained using R(4,$) N 1. 

Defining 5 = 0, and using 5 as a model for 0, we arrive at a model for 4 of the form 

i.e. fm = -sign(V2$), am 0, 
- 

V. MODELS FOR SUBGRID CROSS-TERMS 

The success of the LES formalism depends considerably upon the fidelity of rij = u i j  - 

i i i i i j ,  19j = Tu, - Tiijl qj = Yvuj - YvZj and aiGS = 44 - 4 4 models in portraying  the  true 

magnitude of the unfiltered terms using the filtered variables. For LES in the gas-phase, 

models are required for the subgrid  stresses rij, heat fluxes Sj, and species fluxes qj; for 

the droplet  description, models are required for the subgrid variances a&s: u i l  - i i l i i 1 ,  

" N - - " 
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” - 
u z 2  - ii&, ,UG~ - U 3 i i 3 ,  i?? - T T ,  YvYv - YvYv and P P  - P P.  Since the subgrid 

stresses, the heat flux, the species  flux and  the subgrid variances are all of the same form, it 

seems reasonable and consistent to use the same  type of model for them. In the following, we 

consider the possibility of subgrid modeling  employing three different models: the traditional 

(e.g.  constant coefficient) Smagorinsky model, the Gradient model, and  the Scale-Similarity 

model [25]. We first define these three models below and  introduce in  each of the models 

a  constant of proportionality that we further  determine from comparisons of the modeled 

terms with the exact values of the subgrid  terms as calculated from the unfiltered variables 

in the DNS database. 

” - ” 

A. Smagorinsky  SGS  Model 

In the  traditional Smagorinsky model, rij, O j ,  and qj are expressed as (see [20]) 

where CR is a model constant and A is a filter width. In eqs. 59 - 61 the rate-of-strain 

tensor for the filtered velocities  is  defined as 

We note that  this form  is the basis  for  most SGS models,  concerned only with flow dynamics, 

but that it cannot  be easily extended to compute the subgrid variances for T ,  P and Yv. 

B. Gradient  SGS  Model 

In contrast  to  the traditional Smagorinsky model, the gradient model (e.g. Liu et al. 

[ 121) defined  by 
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is easily extended to compute the subgrid variances for any quantity 4 as 

Theoretically, CcA2 is the moment of the filtering volume (IcA2 of eq. 52) as can be seen 

by integrating the square of the Taylor expansion for 4, eq. 50, over the filtering volume, 

and using filtered instead of unfiltered quantities in the calculation of the derivatives. Thus, 

theoretically, for a cubic top-hat filter Cc = 5 . 1 

This model is not only easily extended to calculate ~ S G S  for all variables, but also has the 

advantage that  the derivatives are already available  from the  computation of the resolved 

fields. 

C .  Scale-Similarity S G S  Model 

In  the Scale-Similarity model, a second filter is introduced and  the protocol involves 

refiltering the flow-field [2] with a test filter A 2 A (filtering at level A is unweighted) to 

yield: 
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If the model were completely exact, Cs would  be 1. Deviations from  unity reflect therefore 

departures from the exact representation of T , ~ ,  8j and qj computed from the DNS through 

eqs. 67 - 69. 

Similar to  the Gradient model, the Scale-Similarity model  is  easily extended to compute 

the subgrid variances for any quantity q5 as 

D. Model Coefficients 

In the following we  will  refer to  standard deviations calculated from eq. 54 as “exact” 

since in this model they represent the best available values that can be  calculated at  the LES 

(i.e. filtered) scale from the unfiltered variables. Therefore, we first compute the correlation 

between the “exact” and model SGS standard deviations using the definitions of eqs. 45 and 

46 and  then  determine the relationship between the “exact)’ and modeled variables which 

yields the model coefficient. Note that eq. 45 allows  pointwise assessment of the correlations. 

The simplest SGS model is that having a constant-coefficient with CR,  CG, Cs being the 

same for all flow variables over the entire  (spatial  and  temporal)  domain. For this  type of 

model, the coefficient can be determined using a least-squares fit to Y = bX which leads 

to b =<<< X Y  >>> / <<< X X  >>> . If X is the model standard deviation and 

Y is the “exact” standard deviation, then b is the square root of the model coefficient. 

More sophisticated models would  have the model  coefficients as functions of space and  time; 

this will be the  subject of a  further investigation as we note that  the simplicity of the 

constant coefficient models is partially  offset by the fact that they yield models which are 

flow dependent. However, considering the lack of experience with a priori  models for  two 

phase flows, it is worthwhile in this first step  to assess the possibility of constant model 

coefficients since they  are the simplest to derive and use  in a LES. 
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VI.  FINALIZATION OF THE  QUANTITATIVE SGS MODELS 

A.  Unfiltered Variable Model 

As stated in eq. 48, the unfiltered variable @ can be  expressed as @ = C$ + f a ,  where 

a = I @  - $1 and f = sign(@ - $), and we showed  in eq. 58 a possible model for f a  (denoted 

fmam) that has the potential of being more accurate than  that  obtained from a simple 

extrapolation of the filtered gas phase variables at  the droplet locations (i.e. fmam = 0). 

The proposed model will be now used to first compute @ for all dependent variables at  the 

Eulerian grid points, and  then  interpolate  it to  the droplet locations. 

Figure 7 shows the probability density function (PDF) for (@-q)/T for  case TP600 with 

$ being u1 , 212, us, T ,  Yv and P,  where 8 = 0 is calculated from the filtered field  using 

eq. 57. Figure 8 shows the  PDF for (4 - $ > / a s ~ s .  Although the correlation between a 

and 3 is similar to  that between a and USGS (ranging from  0.6 to 0.8), the (4 - q)/T and 

($ - $) /CTSGS PDF are remarkably different. The  PDF for (4 - $) /OSGS shows  one  very large 

peak at zero, whereas that for (4 - $)/i7 shows peaks at f l ,  similar to  the  PDF of (4 -$)/a 

which has values of f l .  This confirms T to  be  an appropriate model for a, but implies that 

a and CTSGS are only moderately correlated. Closer examination of the  PDF of ($ - $)/i3 in 

the (z1 - 2 3 )  plane (not shown) reveals the large YV peak at zero to be  due to  the upper 

stream region where YV = 0, whereas the small u1, ug and u3 peaks at zero correspond to 

the lower edge of the mixing layer, where freestream droplets  are being entrained. For all 

variables except Yv, the  PDFs of (4 - $)/a in the droplet free domain are focused  on f 1, 

but have a larger variation between - 1 and +1 in the droplet laden part. 

Figure 9 shows the comparison between interpolating the gas dependent variables to  the 

droplet locations using the exact quantities (unfiltered DNS),  and  interpolating the same 

variables using other models to  the droplet locations. Results are presented in terms of the 

difference  between the model and the unfiltered variable, averaged  over droplets within a 

given z2-interval and  denoted by << >>.  In the first  three models om = a with 0 given 
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by eq. 47 (and therefore  it is evaluated from the unfiltered variables which are not available 

in LES) with the purpose of comparing and evaluating the validity of the models for f .  

Clearly, fm = 0 leads to significant discrepancy between the exact and model interpolated 

variable; any model with f m  = 0 will not perform any better since the deviations toward 

the unfiltered value will be  just as likely as the deviations away from the unfiltered values. 

This is illustrated  in Fig. 9 by the case where f m  randomly assumes the values -1 or +l; its 

predictions generally lead the largest  deviations and  its performance is slightly worse than 

fm = 0 despite  having the exact a. Using fm = -sign(V2$) gives significant improvement 

despite the two assumptions that fm = -sign(V24) and sign(V2+) = sign(V2$); for the 

data shown in  Fig. 9, these  assumptions hold with  86%,  86%,  86%,  85%,  86%  and 93% 

certainty for 211,212, 213, T ,  Yv, and P respectively. When a is replaced by 7 (denoted [a] in 

the figures), while fm = -sign(V2$), there is considerable improvement over the predictions 

obtained  with fm = 0, for all quantities  except T for  which all models give similar results. For 

T ,  YV and P ,  equivalent results are  obtained  with  the two sets ( f m  = 1, am = 6 - m) 
57; in  Fig.  9 we have defined ‘signed [a]’= @ - a. An alternLtive expression for fm,  

f m  = sign(4 - 3) = sign($ - $), is inspired by the Scale-Similarity relations and results in 

a similar accuracy to using fm = -sign(V2$) for all six variables. 

- 

The primary conclusion from the comparison of results  obtained  with modeled f and 

a (the only possibility within LES) is that  the “exact” model proposed  in eq. 58 is the 

most accurate at simulating  the unfiltered gas phase variables as a function of the same 

filtered variables. Moreover, an analysis of the correlation R($,$) defined by eq. 56 shows 

that R = 1 for T and P ,  0.97 < R < 1 for u1,u2 and 213, with  the  greatest deviation 

from 1 appearing  in  the central part of the mixing layer; and  0.7 < R < 1 for Yv, with 

the  greatest  deviation  being  obtained at  the droplet-laden/droplet-free interface. The low 

Yv correlation is due  to  the  sparsity of drops,  producing  a YV which reduces the quality 

of the  statistics. Since apparently R < 1 for Yv, we tried unsuccessfully to improve the 

modeling of the unfiltered  quantities  through the filtered quantities by slightly reducing R. 
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Not  only was the model with R < 1 generally inferior, but even at  the interface where 

the  greatest deviation from unity was obtained, R = 1 led to  the best prediction of Yv at 

droplet locations. Most important, R = 1 is the only  value that provides the correct -d 2 0 

in the laminar freestream. Finally, we note that  the efforts at reducing the error for the 

approximation of eq. 58 through the reduction in the error in Yv are misplaced since the 

total model error is determined by that of the velocity components which are the largest 

(about 1.5%); in contrast,  the  temperature, mass fraction and pressure have errors an order 

of magnitude lower.  Given these observations, it is  unlikely that increased accuracy would 

be obtained even if a model with a variable R (according to  the dependent variable) could 

be constructed. 

B. Determination of SGS Model  Constants 

Illustrated in Fig. 10 are the subgrid scale stresses calculated from the DNS, those 

predicted by the Smagorinsky model, and  the correlation between the DNS calculated values 

and the model predictions calculated according to eq. 45. The lack of good correlation 

between the DNS and predicted stresses is not surprising considering that even for single 

phase flow global correlations are in the range of 0.4 (see [4] and [24]). Since in the present 

situation local rather  than global correlations are of interest because the unfiltered variable 

model requires good  local  values of OSGS for computing 8, the lack of good local correlation 

induced us to discard the Smagorinsky model. 

Both the Gradient  and the Scale-Similarity models are assessed in Figs. 11 - 13 where 

the normalized OSGS planar averages are shown in  Figs. 11, 12 and 13 for  cases TP500a, 

TP500b  and  TP600 respectively and OSGS is calculated either from the unfiltered values  or 

using the models. For the sake of optimizing the Scale-Similarity model, we also consider 

several test-to-LES filter ratios, as the best value recommended in the  literature is usually 2 

(e.g. [24]). The model coefficients used  in all plots in Figs. 11 - 13 are  the  mean values - CC 

listed in Table VI1  for the gradient model and Cs listed in Table VI11  for the Scale-Similarity 
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model. To find these model  coefficients listed in Tables VI1 and  VIII, linear fits of the exact 

CTSCS to the model CTSGS over the whole domain were perforrned. Since for the  temperature 

the SGS deviations were underpredicted, the model  coefficients  were replaced by Cc Pr in 

eq. 66 and CsPr  in eq. 70, where the  Prandtl number is Pr = 0.7 for the present flow 

conditions. For  all variables and all filter ratios of the Scale-Similarity model, as well as  for 

the Gradient model, the prediction of IYSGS is very good, with that from the Scale-Similarity 

model being slightly superior. The only exception to this good agreement occurs for the 

temperature (see Figs. l l d ,  12d and 13d) when the Scale-Similarity model with filter width 

ratio &/A = 1 is used. This is not completely surprising since as mentioned above, most 

investigators using a similarity model recommend A/A = 2. 

Along with the individual SGS model constants for  each set of DNS results, we also 

show  in Tables VI1 and VI11 the recommended mean constants for all runs. For the gradient 

model, the mean value of = 0.4 is approximately 40% larger than  the theoretical value 

of fi = l / a  = 0.29 for the cubic filter. The discrepancy between the model and 

theoretical values  is attributed  to  departures from the behavior assumed by the Gradient 

model, most notably to  the replacement of unfiltered by filtered quantities in the calculation 

of the derivatives (as stated when formulating the model). For the Scale-Similarity model, a 

linear best fit g i v e s a  = 1.71 -0.49(A/A), however, with only three values  for this fit, it is 

recommended to use the computed coefficients rather than  the linear best  fit.  In  particular, 

for &/A = 1 we find that fi f 1, indicating that $ = $ is not  a good assumption. 

Consistent with the previous discussion on the model  for the unfiltered variables using the 

filtered variables, Figs. 11 - 13 show that  the IYSGS are largest for the velocity components 

whereas those for Yv, T and P are  an order of magnitude smaller. 

- 

VII.  CONCLUSIONS 

An a priori subgrid analysis has been presented for a temporally developing mixing  layer 

with evaporating  droplets by employing a DNS database for three Reynolds number (based 
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on vorticity thickness) and mass loading combinations: (500; 0.2),(500; 0.5) and (600; 0.2). 

The DNS equations were filtered, and LES equations were constructed  subject to several 

assumptions. These assumptions were evaluated by calculating the  exact filtered expressions 

and their filtered models for the  three  sets of results in the  database, as well as the  other 

terms in the equations.  The comparison among these terms showed that  the assumptions 

used to derive the final set of LES equations were  well justified. For example, an order of 

magnitude analysis of the terms in these equations showed that  the subgrid terms arising 

from filtering the inviscid terms  are smaller only than  the inviscid terms based  on filtered 

quantities. However, the subgrid terms arising from filtering the viscous terms were found 

to be negligible. The triple correlation of velocity,  mass fraction and  temperature is found 

to be well modeled as the  temperature multiplied by the mass fraction-velocity correlation. 

Within the LES formalism for  two phase flows, it was found that  there are two  modeling 

issues  in addition to  the usual modeling of the SGS terms. One of these modeling issues, 

which  is that  the unfiltered gas phase dependent variables at  the  drop locations must be 

derived from the LES filtered variables, was addressed as a preliminary to SGS modeling. For 

each gas phase variable, several constructs for the unfiltered value as function of the filtered 

value  were considered, and  it was shown that  the most accurate is that with  a standard 

deviation having the magnitude of the filtered standard deviation and  the opposite sign 

of the Laplacian of the filtered variable. With this model, predictions for the unfiltered 

variables at  the droplet locations were found to be considerably improved compared to 

simply interpolating the filtered variables. 

To model the subgrid scale (SGS) standard deviations, two models, the Gradient and 

Scale-Similarity, were found to give  excellent results when the model constant was properly 

calculated using the  database, while the traditional Smagorinsky model  was  found inade- 

quate. More sophisticated dynamic models, where the present constant is  replaced  by a 

functional dependence of the filtered variables will  be  considered in  the  future.  Statistical 

analysis of the  database showed that  the gradient model is well represented by the same 

model constant for all three cases. For the similarity model, the constant was found, as 
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expected, to be dependent on the test-to-LES filter ratio. 

Future work  will address dynamic SGS modeling  as well as the second issue in  two phase 

flow LES calculations which  is that of the computation of the averaged source terms from 

the filtered dependent variables. Once  this issue is resolved, we will conduct an a posteriori 

testing of the Gradient  and Scale-Similarity models  in an LES. 
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TABLES 

Case  Re ML Grid  Time 

TP500a 500  0.2  252 x 276 x 152  85.0 

TP500b 500  0.5  252 x 276  x  152  85.0 

TP600  600  0.2  300 x 332 x 180  86.2 

TABLE I. Summary of DNS Database 

Equation (i = 1) TP500a  TP500b  TP600 

3.9 x lo5 

3.4x 105 

7.1  x lo4 

4.0 x 105 

3.4 x 105 

7.9x 104 

4.4x  105 

3 . 5 ~  lo5 

7.1 x lo4 

1 . 5 ~ 1 0 ~   1 . 7 ~ 1 0 ~   2 . 0 ~  104 

TABLE 11. Magnitude  (Root-mean-square) of terms  in  filtered q momentum  equation 

" 
p u 2  Equation ( i  = 2) TP500a  TP500b  TP600 

4.3 x 105  4.0 X 105 4 . 7 ~  lo5 

3 . 7 ~  lo5 3.2 x lo5 3.5 x 105 

7 . 7 ~  lo4 7.8  x  104 7.5x 104 

1.5  x lo4 1 . 6 ~  lo4 2.0x 104 

- 
S I I , ~  1.1 X io4 2 . 7 ~  lo4 1 . 1 ~  io4 
d(&j - & j )  2 . 8 ~  lo3 3.0 x 103 3.1 x lo3 

axj 

TABLE 111. Magnitude  (Root-mean-square) of terms  in  filtered 2 2  momentum  equations 
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" pu3 Equation ( i  = 3) TP500a  TP500b  TP600 

3 . 8 ~  lo5 

2 . 8 ~  lo5 

5 . 8 ~  lo4 

1 . 4 ~  lo4 

7.5 x lo3 

5 . 8 ~  lo2 

3 . 7 x  105 

2.8 x 105 

6.5 x lo4 

1.4 x lo4 

2.6 x lo4 
8 . 7 ~  lo2 

4.5 x 105 

3.1 x lo5 

6 . 7 ~  lo4 

1 . 9 ~  lo4 

8.1 x lo3 

7.3 x lo2 

TABLE IV. Magnitude  (Root-mean-square) of terms in filtered x3 momentum  equation 

P E  Equation  TP500a  TP500b  TP600 

2 . 8 ~  lo8 

1.9x108 

3.3x lo8 

2.0x los 

1 . 7 ~  lo7 2.9x 107 1 . 9 ~ 1 0 ~  

1.2x107 1 . 7 ~ 1 0 ~  1 . 6 ~ 1 0 ~  

1.9  x lo6 2.0 x lo6 2 . 4 ~  lo6 

1.8 x 106 1.9x106 2 . 4 ~  lo6 

9 d(2liaij - G&j) 7.6  x  105 8.5 x 105  9.1 x lo5 

TABLE V. Magnitude  (Root-mean-square) of terms of filtered  energy  equation 
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@ i i  Equation  TP500a  TP500b  TP600 

1 . 5 ~  lo2 1 . 8 ~ 1 0 ~  2.0x 102 

2.8 x lo1 3.4 x lo1 2 . 8 ~  lo1 

2.0x lo1 3.2 x lo1 2.2x  101 

1.2x lo1 1 . 6 ~ 1 0 ~  1 . 6 ~ 1 0 ~  

TABLE  VI.  Magnitude  (Root-mean-square) of terms of filtered  species  equation 

TP500a  TP500b  TP600  Mean 

A 3.200~  3 .200~  2 .667~ 

& 0.397  0.398  0.402 0.40 

TABLE VII.  Coefficient for Gradient  Model 

&/A TP500a 
~~~ 

TP500b  TP600  Mean fi 
1.0 1.237  1.253  1.243  1.24 

1.5  0.921  0.931  0.925  0.93 

2.0  0.751  0.759  0.755  0.75 

TABLE VIII. Coefficient for Similarity  Model 
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FIGURES 

FIG. 1. Planar RMS of filtered terms, Case  TP600 a)  q-momentum b) zymomentum 

c )  zs-momentum d) Energy, e) Mass fraction 

FIG. 2. Evaluation of assumption puiuiuj - mfij = pijfiiii a) j = 1 b) j = 2 c) j = 3 

FIG. 3. Evaluation of assumptions 7 = and Y D  = ~ v T  a) T b) ?vF c) RMS of differences 

FIG.  5.  Evaluation of assumption 2liaij = Gi3i:ij a) j = 1 b) j = 2 c) j = 3 

FIG. 7. PDF of ( 4  - $)/3 a) u1, u2, u3 b) T,  P, YV 

FIG. 8. PDF of (4  - $)/ascs a) u1, u2,. 113 b) T ,  P, YV 

FIG. 9. Error in  unfiltered  variable  model 4 = 5 + fmam interpolated to droplet  locations, 

Case  TP600 a) u1 b) u2 c) 213 d) T e) Yv f )  P 

FIG.  10.  Subgrid  stresses,  Case  TP600  a)Exact  b)  Smagorinsky c) Correlation between  exact 

and  Smagorinksy  stresses 

FIG. 11. SGS  standard  deviation, CaseTP5OOa a) u1 b) 212 c) u3 d) T e) YV f )  P 

FIG. 12. SGS  standard  deviation,  Case  TP500b a) u1 b) u2 c) u3 d) T e) YV f )  P 

FIG. 13. SGS standard deviation,  Case  TP600 a) u1 b) 212 c) u3 d) T e) Yv f )  P 
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Figure I .  Planar RMS of filtered terms, Case  TP600 a) x,-momentum 
b) x,-momentum c) x, momentum  d)  energy e) mass  fraction 
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Figure 1 .  Planar RMS of filtered terms, Case TP600 a) x,-momentum 
b) x,-momentum c) x3 momentum  d)  energy e) mass  fraction 
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Figure 4. Evaluation of assumptions regarding ~ Y J U , - ~ T  
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Figure 5. Evaluation of assumption  u,o,,=u, oil 
a) j=l b) j=2 c)  j=3 
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Figure 10. Subgrid stresses,  Case TP600 a) Exact b) Smagorinsky 
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Figure 13. S G S  standard  deviation, Case TP600 
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